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Objectives

Today we will mainly talk about search, which encompasses all
forms of automatic traversal of games as defined by their rules.

We will not refer to any single type of game; we will speak about
computational search techniques as they broadly apply to games
with discrete representations (!) which allow us to perform search on
a greater number of “positions.”

Keeping away from deep systems concepts, we will motivate:

How strong and weak solutions to “big” games are computed and
stored in realistic space and time.
How to compute a “solution set” that allows us to ask questions
about meta-strategies and game structure.
How you can grab a computer and strongly solve your favorite game
(hopefully not taking the fun out of it in the process).
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Overview

We will cover three high-level aspects high-performance search:

Representation: How do we differentiate games we care about in a
convenient yet abstract way?

Computation: How do we generate the information we want to
know from representations?

Storage: How do we store and retrieve the information we generate
during computation?
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Representation

For simplicity, we will consider the complete-information (!) and
deterministic (!) case of discrete games.

An extensive-form game is 4-tuple G = ⟨N, H, p, (≿i )⟩ where [1],

N is the set of players, usually {1, . . . , n} in an n-player game,
H is a set of sequences (or ”histories”) whose prefixes are all in H,
p : H → N assigns a player to each non-terminal history,
player i ∈ N has a preference relation ≿i on the set Z ⊆ H of
terminal histories (which is reflexive and transitive).
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Representation

Many histories are often structurally
similar or even equivalent:

We establish equivalence
classes among histories,
creating the intuitive notion of
a set S of game ”states.”

Histories can be equivalent for
many reasons (e.g., game board
symmetry or cyclic gameplay).

In the context of methods for
imperfect information analysis,
T. Sandholm [2] refers to this
process as game abstraction
(see illustration).
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Representation

Revisiting the definition G = ⟨N, H, p, (≿i )⟩, we will

replace H with a set of states S (through some implicit s : H → S),

and define a “utility” function u : S → R|N| to replace (≿i ), which
satisfies a ≿i b ⇐⇒ u(s(a))i ≥ u(s(b))i for all histories a, b ∈ H
and players i ∈ N.

Then, we can use the game rules to express ⟨N, S , p, u⟩ as an implicit
game graph in a generic computer program:
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Computation

Hashing functions allow implementations to transact in “States”:

These functions encode in-memory representations that are nice to
work with into dense sequences of bits.

Their output should be a common bitwidth (generally 64 bits),
which is how we can represent them using a single sized type.

Must be invertible (or “perfect hash functions”), so they are usually
custom-made for each game.

High-performance implementations operate on 64 bits directly,
avoiding state encoding and decoding (which happens at least once
for every game state in the course of computing a strong solution).

[[“x”, “o”, “-”],
[“o”, “x”, “-”], ←→ 0b000...0010101110110 = 1398 ∈ N264

[“x”, “o”, “-”]]
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Computation

We can now look at algorithms that consume this interface. Consider the
following implementation of Minimax as a representative example:

Perform a full exploration of game states.

Keep track of the utility of each player at terminal states, and mark
them as solved.

For each parent state of a solved state, set its utility vector to that
of the child which would maximize the utility of the player whose
turn it is at the parent state, and mark it as solved.

Repeat the previous step until all states are marked as solved.

Obtain parent state through the construction of an in-memory graph
data structure in O(|S |2) space, or add a “retrograde” function to the
Game interface to keep space usage at a minimal O(|S |).

Note: The algorithm outline above is not correct for cyclic games.
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Computation

In a general case, the time complexity of search is linear in the size of the
game graph: O(|S |2). In certain cases, it is worthwhile to parallelize the
process by defining a “partition” function π : S → N in a way that
minimizes the sum of the conductance of all partition cuts.
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Storage

Solving algorithms generate streams of output (utility and other
attributes bound to states) that need to be efficiently stored and
retrieved:

Memory is rarely enough to keep all the information we care about.

It is orders of magnitude slower to perform disk operations.

Custom database systems minimize the number of disk operations
needed throughout the execution of a solving algorithm.

There are countless considerations in database systems. . .
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Storage

Example tradeoff: Storing states or using them as indices, featuring
sparse hash functions.
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Thank you

In summary, we have gone through how we represent games, compute
algorithms that consume them, and store generated information in a way
that allows us to extend the depth of search in game-theoretic systems.

Our group’s work: https://github.com/GamesCrafters

Our strong solutions: https://nyc.cs.berkeley.edu/uni/about

Lingering questions: maxfierro@berkeley.edu
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